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Abstract: Methane is the major greenhouse gas produced by the 
process of methanogenesis carried out by methanogenic bacteria in 
the rumen of ruminant. The methanogenesis process is regulated by 
several pathway enzymes present in the methanogenic bacteria, one 
of them is newly discovered Methenyltetrahydromethanopterin 
Cyclohydrolase enzyme found in Methanobrevibacter ruminantium. 
Therefore, there is need to inhibit the activity of this enzyme to 
regulate the process of methanogenesis which may result in lowering 
the output the methane gas. Different chemical treatments have been 
attempted however those are not cost effective and produced several 
side effects on the ruminant growth. Therefore, currently plant 
secondary metabolites have been prompted interest to selectively 
inhibit ruminant methanogenesis. We explored molecular docking 
method to find selective natural inhibitors of 
Methenyltetrahydromethanopterin Cyclohydrolase enzyme to 
regulate methanogenesis. Docking detected higher affinities of 
bioactive compounds such as δ-Viniferin, Diosmin and Eriocitrin for 
Cyclohydrolase enzyme as compared to chemical inhibitors 
Lovastatin and Mevastatin. Therefore, we predicted that ruminant 
nutrition supplements containing δ-Viniferin, Diosmin and Eriocitrin 
bioactive compounds can be serve as an effective treatment for 
reducing methanogenesis process and may lower post methane 
production in the output.  

1. INTRODUCTION 

Methane is a greenhouse gas (GHG), its global warming 
potential 25 times more than CO2 [1]. Globally, ruminant 
produces 80 million tonnes of CH4 annually [2]. Enteric CH4 
is produced under anaerobic conditions in the rumen by 
methanogenic Archaea, using CO2 and H2 to form CH4, and 
thus reducing the metabolic H2 produced during microbial 
metabolism [3].  

Plant extracts with high concentrations of secondary 
compounds are potential candidates to achieve this problem 
[4]. Plants contain bioactive secondary plant metabolites 
which are helpful for methane mitigation [5, 6]. These 

compounds activate several metabolic reactions in the 
ruminant cellular system such as the interaction of cholesterol 
and saponin promotes cell rupture and decreases the growth of 
methane producing bacteria. The presence of protozoa in the 
rumen causes protein turnover by predating on bacteria, it 
increases the nitrogen utilization of the ruminant and may lead 
to an increase in growth, milk, or wool production [7, 8]. 
Several flavonoids compounds also proved to decrease 
methane production [9]. Phenolic acids such as p-coumaric 
acids, ferulic acids, cinnamic acids and phloretic acids and 
some monomeric phenolics have been found to decrease 
methane, acetate and propionate production [10]. The rumen is 
characterized by its high microbial population and it is 
comprised of different prokaryotes, methanogenic archaea 
(Methanobrevibacter ruminantium, Methanobacterium 
formicicum, Methanosarcina Barkeri, Methanomicrobium 
mobile eukaryotes, protozoa, anaerobic fungi and 
bacteriophages. Therefore, interest in the rumen methanogens 
has resulted from the fact that ruminants typically lose 2–15% 
of their ingested energy solely as methane [11]. As a 
consequence, new targets or alternative strategy will be 
implemented to mitigate methane production.  

Methenyl-tetrahydromethanopterin (methenyl-H4MPT) 
cyclohydrolase is found in methanogenic archaea, sulphate-
reducing archaea and methylotrophic bacteria [12, 13, 14]. It 
catalyzes the reversible formation of N5,N10-
methenyltetrahydromethanopterin (methenyl-H4MPT+) from 
N5-formyltetrahydromethanopterin (formyl-H4MPT) [15,16]. 
N5-formyl-H4MPT+H+ N5,N10-methenyl-H4MPT++H2O 
DG°¢ = –5 kJ/mol [12]. This reaction in the forward direction 
is involved in the reduction of CO2 to methane and in the 
autotrophic CO2 fixation. In the reverse direction it is involved 
in C1 unit oxidation to CO2. The enzyme has been purified 
from Methanobrevibacter ruminantium, Methanobacterium 
thermoautotrophicum [17, 18], Methanosarcina barkeri [19], 
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Methanopyrus kandleri [20, 21], Archaeoglobus fulgidus [13] 
and Methylobacterium extorquens AM1 [22]. There is interest 
in feed additives with the potential to reduce ruminal 
methanogenesis. There are a number of experimental studies 
on plant extracts to reduce the methanogenesis process. In this 
study, our focus is on finding the potential bioactive 
compounds which may inhibit the function of 
Methenyltetrahydromethanopterin Cyclohydrolase enzyme in 
order to reduce methanogenesis process. We used molecular 
docking method for computational virtual screening of 
different plant origin phytochemicals or bioactive compounds 
to find a potential natural inhibitor for the 
Methenyltetrahydromethanopterin Cyclohydrolase enzyme.  

2. MATERIALS AND METHODS 

2.1 Input Receptor file 

Crystalline structure of Methenyltetrahydromethanopterin 
Cyclohydrolase enzyme (PDB Code: 4FIO) of 
Methanobrevibacter ruminantium was obtained from a RCSB 
protein data bank in the pdb format. Its chain A was selected 
for further molecular docking study. 

2.2. Compounds Database 

Information about different phytochemicals and bioactive 
compounds was obtained from the available literatures that 
reported the beneficial effect of plant origin secondary 
metabolites and bioactive compounds in the ruminant growth 
system. Different classes of compounds were selected as 
described in the phyto-chemical database 
(http://www.phytochemicals.info/phytochemicals.php) and 
available in the literatures. Total 159 phytochemicals were 
downloaded from PUBCHEM database and their SMILES 
strings were converted into 3D structure via CORINA server. 
All files were saved in the pdb file format 
(http://www.molecular-
networks.com/online_demos/corina_demo). Two known 
chemical compounds known to act as potential inhibitors for 
methane production Lovastatin and Mevastatin were also 
selected for our docking study.  

2.3 Binding site prediction 

Structure of Methenyltetrahydromethanopterin 
Cyclohydrolase enzyme (PDB Code: 4FIO) was submitted to 
functional site prediction servers such as PROFUNC and 
PINTS for putative binding site residues prediction. These 
residues were further used as a docking target during the 
protein-ligand docking simulation.  

2.4 Molecular Docking 

The pdb structure of Methenyltetrahydromethanopterin 
Cyclohydrolase enzyme (PDB Code: 4FIO, chain A) was 
submitted to molecular docking with the compounds database 

by iGemdockv2.1 software. Note: the binding site residues 
predicted by the servers used as docking target. The Drug 
Screening platform of iGemdock was selected for both the 
docking studies with parameters such as Population size: 200, 
Number of generations: 70 and Number of solutions: 3. Top 
five hits (with lower interaction energies) of bioactive 
compounds obtained after the iGemdock docking were further 
submitted to the second step of the docking process by 
Patchdock docking software. Compounds were ranked based 
on their interaction energies and fitness values produced by 
the docking via iGemdock software. On the other hand, 
Patchdock ranked the compounds based on the Patch-Patch 
interaction score. The most stable conformations of the 
bioactive compounds were selected based on the lowest fitness 
values and higher patchdock interaction scores. Subsequently, 
post docking analyzes were performed for the binding of 
bioactive compounds on the enzyme to extract the binding site 
residues at radius of 8Å taken compounds as a center.  

 

Fig. 1: Schematic for the overall methodology. (1): PDB structure 
of Methenyltetrahydromethanopterin Cyclohydrolase enzyme 
(PDB Code: 4FIO, chain A) was obtained from protein data 

bank. (2): Download the compounds from ligand databases. (3): 
Obtained inhibitors compounds. (4): Molecular docking against 

the structure of 4FIO. (5): Post docking analysis. (6): Compounds 
binding on the enzyme structure. (7): Collection of residues 
around the bounded ligand at 8Å of radius taking ligand as 

center.  

3. RESULTS  

Total 159 bioactive compounds were obtained from the ligand 
databases. These compounds were docked with the 
Methenyltetrahydromethanopterin Cyclohydrolase enzyme 
(PDB Code: 4FIO, chain A). Bioactive compounds δ-Viniferin 
showed largest affinity for the Cyclohydrolase enzyme with 
iGemdock interaction energy (fitness value) of -102.06 
kcal/mole. Two more compounds, Diosmin and Eriocitrin 
were obtained similar affinities with the Cyclohydrolase 
enzyme with iGemdock interaction energies (fitness values) of 
-101.75 kcal/mole and -101.28 kcal/mole (Table 1). The 
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